[ 713 ]

XVII. Memovr on ABEL'S Theorem.
By R. C. Rowg, M.A., Fellow of Trinity College, Cambridge.

Commumicated by A. Caviey, LL.D., F.R.S., Sadlerian Professor of Mathematics in
the University of Cambridge.

Received May 27,— Read June 10, 1880.

THE object of this paper is to present in a shortened and simplified form the processes
and the results of ABEL’s famous memoir ¢ Sur une propriété générale d’'une classe tres-
$tendue de fonctions transcendantes,” composed and offered to the French Institute in
1826, but first published in the ‘Mémoires des Savans Etrangers’ for 1841 (pp. 176-264).

The generality and the power of this memoir are well known, but its form is not
attractive. BooLr indeed in a paper on a kindred subject (Phil. Trans. for 1857,
pp- 745-803) says: “ As presented in the writings of ABEL. . . the doctrine of the
comparison of transcendants is repulsive, from the complexity of the formule in which
its general conclusions are embodied.” BooLe’s theorems however escape this charge
only with loss of the generality which makes ABEL’s valuable.

But this complexity is rather apparent than fundamental. It is here attempted, by
re-arrangement of parts, by separation of essential from non-essential steps, by changes
of notation, in particular by the introduction of a symbol and a theorem discussed by
BooLt in the paper already referred to and by the addition of examples of the pro-
cesses and results, to reduce this part of an important subject to a shape more simple,
while no less general, than the original.

The first of the three sections into which the following paper is divided contains
(arts. 1-10) the investigation of the principal theorem of ABEL’S memoir : these articles
correspond to pp. 176-196 of the original, but are much simplified by the aid of
BooLE’s proposition : the theorem is written at the end of art. 8 in the form

1 1(z,
[ /(e e=0] ;s [F@)2 55 0 1og o) +C

and answers to ABEL'S equation (37), p. 193.
In art. 11 three examples are given of ABEL’S theorem. Those have been chosen of

which the results were well known (e.g., the circular and elliptic functions) with a
view to the comparison of this and less general methods.*

* Tor other methods of solution compare Lrsrtie Enris, B.A. Reports for 1846, p. 38; Lecenors, ¢ Fone.
ElL,’ t. iil., p. 192; Boowg, loc. cit., arts. 18, 24.

MDCCCLXXXI. 4 z

IS4 ()
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Q%g%
Philosophical Transactions of the Royal Society of London. STOR IS

www.jstor.org



714 MR. R. C. ROWE ON ABEL’'S THEOREM.

In the second section (arts. 12-20) it is shown to follow from the results of the first
that the sum of any number of integrals of the form considered may be expressed in
terms of a definite number of such integrals, and the question what is the least
value of this definite number is discussed : the result is stated at the end of art. 20.
These articles correspond to pp. 211-228 in the original ; they are rendered more
direct by the nomenclature of ‘major terms’ and ‘sets,” the introduction of the
letter 7, and various minor changes of notation.

Art. 21 containg an example of the method of this section.

The third section contains two distinct parts : first, a generalization (art. 22) of the
theorem of Section I., showing that a similar expression to that obtained there may be
found for the sum of any number of such integrals each multiplied by any rational
number positive or negative, integral or fractional ; secondly, an investigation (art. 23)
of the conditions necessary that the algebraic expression obtained for the sum of the
integrals considered in Section I.—7.e., the right-hand member in the main theorem—
may reduce to a constant. This article corresponds to pp. 196-208 in ABEL, but the
demonstration is greatly shortened and simplified by its being placed after (instead of,
with ABEL, before) Section II.

ABEL concludes by applying his methods to the case of integrals of the form

S (i; de.
i

I have succeeded in shortening the necessary work, but my process and result are so
similar to those of the original as hardly to be worth reproducing here.

An appendix contains an algebraical lemma and a list—it is hoped complete—of
the errata in the original memoir. It appeared to the writer worth while to attempt to
save subsequent readers the considerable inconvenience these errata had caused
himself.

There follows an addition from Professor CAYLEY, wherein it is shown that the
expression found in art. 20 for the least value of the number of conditions connecting
the variables of the integrals we sum is equal to the deficiency (G'eschlecht) of the curve
represented by the equation y(x, ¥)=0. That this least value is equal to the deficiency
is a leading result in RIEMANN’S theory of the Abelian integrals; the assumptions
made in the text as to the form of the roots of the equation x(x, ¥)=0 considered
as an equation for the determination of y are equivalent to the assumption that the
curve x(z, ¥)=0 has certain singularities ; and it is in the addition shown that the
resulting value of the deficiency, as calculated by the formulee in Professor CAYLEY’S
paper ‘On the Higher Singularities of a Plane Curve,” Quart. Math. Journ., vol. vii,
(1866), pp. 212—222, has in fact the foregoing value.
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Secrion 1.

1. The general question to which an answer is sought in what is called the Theory
of the Comparison of Transcendants may be stated thus :—

Is it always possible to establish, between the values for different variables of the
wntegral of an algebraic function however complex, algebraic relations : the variables
themselves being connected by any requisite algebraic laws ?

If, for example,

[Xdoc =F(x)

where X is any algebraic function of «, rational or irrational, integral or fractional, is
it necessarily possible by connecting x;, @,, . . . x, by any requisite algebraic laws to
obtain an algebraic (or logarithmic) expression for the sum

F(z)4+F(x)+ . .. +F(x,)?

This question is suggested on the one hand by such well-known results as

F ()4 F(x,)=constant, where X=-—— \/h-h if x2+tu,=1

and
1
F(a,)+F (@) +F(w;) =0 where X= "3 53— 755

if

4(1—a?)(1—a’) (1 —5°) = (2 — 0" — @ — g+ K "0y )’,

and on the other hand by the possibility of finding algebraical expressions for many
symmetric functions of the roots of equations though these roots may not separately
be so expressible.

It is in fact this combination of the theory of integrals and the theory of equations
which furnishes the key to the problem ; enabling us to express the requisite algebraical
laws very concisely by a single equation of which the variables are roots, and whose
coeflicients are not independent but connected by a corresponding number of relations.

2. The expression of the function to be integrated.

To escape the inconvenience of fractional and irrational forms we first introduce two
new functions and a fresh variable.

Whatever be the nature of the function X—the subject of integration in the
transcendants we are considering—it may be written

S, y)

4z 2
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where /" is a rational (but not necessarily integral) function of wx and v, while y is
determined as a function of x from the equation

XW) =Y+ Pucryy Py o Py yFP=0

the p’s being rational integral functions of .
This is clear since any explicit irrational function is the root of an equation with

integral and rational coefficients, in which, by a suitable change of variable, the highest
coefficient can be made unity.

4. The shape in which it is most convenient to deal with f(z, %), and in which we
shall in future assume it to be expressed, is obtained when its denominator is made the
product of x’(y)—the differential coefficient of x(y) with respect to y —and a function
of a only.

This can always be done ; for let

@ 9K @)
Folz, w)x' ()

— 0@ X 9 F, y)Fa@, 9s) - . . Fo, 9)
X @) Fo(z, y1)Fo(x, yo)Folz, ) - - - Fo(@, 92)

Y1 Yo - - . Y, being the n roots of the equation
x=0
and therefore functions of x; and ¥, being the root which we have before denoted

by #.
Now the product Fy(x, v,) . . . Fy(, 9,) involving only symmetrical functions of the

y’s may be expressed as a function of @ only; while, using the equations

3, Y =2Y,—
r=2 =1
S S uy=3 3 Ul—y 3y,
r=2 g=2 r=1 §=1 =2
v &e. =&e.
and, lastly,
(=)"po

YYs -« - Y= T

the product
Fy(e, %)Fz(% Ys) « - - Fyo(, 9.)

can be expressed as a rational function of x, y; while F(x, ) and x'(y) are rational

and integral functions.
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So f(, y) the subject of integration is reduced to the form

f 1 (‘73 ) ?/)
@)X @)

in which it will hereafter be used.

5. The equation whose roots are the variables of the functions we compare.

This equation is clearly not arbitrary ; for if it were we could choose it linear ; and
having then only a single integral, should be required to find for it an algebraic (or
logarithmic) expression, a thing generally impossible.

We shall find it sufficient to take, for this equation, the result of eliminating
between x and any other integral function of x, y; which, by the use of x, can, of
course, be made of (at most) the (n—1)™ degree in .

Let this second function be

0 =0y "+ 4+ . -« + Y+

and let the result of elimination, viz.:—

| 0(5)0(32) - - - 0(y.)
be denoted by E.

=0 may be called the equation of condition.

We assume ¢, ¢y - - - ¢.—q to be rational integral functions of x; while any number
of the coefficients in these functions are arbitrary : call them a,, ay, . . .

E will then be a rational integral function of x and these quantities a,, a,, . . .

We may then either (1) take the roots of the equation E=0,—a,, ay, . . . being con-
sidered absolute constants—as the upper limits of our integrals (of which alone we view
these integrals as functions); or (2) since by a due alteration of the a’s we may produce
any possible simultaneous alteration of the «’s, we may consider the variables 2 in
the different integrals as, in the passage from the lower to the higher limit, always
connected by the equation E=0, in which now a,, a,, . . . are a system of variables
with which the variation of # has to be connected. The latter, as the more general
and powerful hypothesis, is to be preferred.

E=0 may be called the equation of the limats, or the equation of transformation.

6. It may happen that, owing to a relation connecting the a’s, the equation E=0 is
satisfied by values of x independent of these new variables. This relation, since one
of the #'s of which E is the product will vanish for this value of « and 6 is linear in
the a’s, must be a linear relation. We will then suppose

E(x, ay, ay, . . . )=F(x)F(x)

where Fy(x) is independent of the a’s ; and, the degree of F(x) being u, let its roots be
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%y, Xy . . . x,; let the corresponding values of y, the root of x with which we are
*

concerned, be 4,1, Y9, - « - Yy
7. Having expressed f(x, y) in a convenient shape we have next to transform the

dx of our integrals into the differentials of the new variables.
If 8 denotes the operation of differentiating with regard to our new variables we

have from the equation F=0 by which « is connected with them

F'(x)da+6F(x)=0

But
SE=Fy(x)dF (x)
therefore
| Jye _ OE
T Fy@)F(2)
Again
E=0(y,)0(ys) - . . 0(y.)
therefore

r=n
SE=3 ;.80(y.)

* As an example of these processes let
1

X= it
A natural assumption is ‘
x(P)=y*—(1+24)=0
so that
1
fe, =y
Take for the second function the form
. 0(y)=y—(1+aw+ap?)
and on elimination we find
E(z, a), 0))=(a*—1)2%+20;052% + (2,°+2a,)x + 20, =0
Now, if we had
ay+ay=—1+414/2 (a linear relation)

E=0 would be satisfied on making #=1 and we should have

Fy(z)=2—1
while
F(w)= (a2 —1)a*+ (ay09+ ay—1)a+ a2+ 20709+ 20,2 + a5 —1

and may be expressed in terms of a; alone.

‘We should also have
1 2 2

so that
S 9)=2, fi(»)=1,
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Now (using as before y or y, indifferently for the root with which we are concerned),
we have 6(y;,)=0: whence if \(x, %) be any rational function

Mz, y)SE=\(, J)E 86(%)

=Nz, 1) mﬁ@(yl)

all the other terms in 3 vanishing,

r=n E ‘
=3\w, 97) g, 5-500)

if we introduce a set of vanishing terms.

We have then obtained an expression for dx and a convenient modification of the
result when the differential is multiplied by any function A of = and .

So, finally,

R ACY)) SE
S y)de=—= ) TP @)
r=n 1 » E

T @F@F @5 K (@/r) 9(:%)

8. From this point a symbol and theorem due to BooLr¥ furnish a short path to
the result. The symbol is thus defined :—

“Tf ¢(x) f(x) be any function of @ composed of two factors ¢(x), f (%), whereof ¢()
is rational, let ®[¢(x)]f () denote the result obtained by successively developing the
function in ascending powers of each simple factor z—a in the denominator of ¢(x),

taking in each development the coefficient of ;i—(;, adding together the coefficients

thus obtained and subtracting from the result the coeflicient of i in the development

of the same function ¢(x) /() in descending powers of x.”f

Boorr’s theorem is the following :—

“If ¢(x) be any rational function of « and if E=0 be any equation, rational and
integral with respect to @, by which « is connected with a new set of variables d;, ay, . . .
then, provided that ¢(x) does not become infinite when E=0, we have

Sh(@)=—06[d(x)]

the 3 indicating summation for the various roots of the equation E=o.

dlog E”

* Phil; Trans. for 1857, pp. 751, 757.

+ Cavcny employs in his ¢ Calcul des Résidus’ a symbol & only differing from BooLE’s © by not
including the subtractive term last mentioned. Any theorem can be instantly transferred from the one
notation to the other.
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Assuming the truth of this theorem we may proceed with the investigation as
follows :—

Since f;(x, y)e—y‘éﬂy is a rational integral function of @, y and may therefore be
expressed in the form SP,y, P, being a rational integral function of & and  a positive

integer not greater than n—1, while ¥ is a root of the equation x(y)=0, we have, by a
known theorem of partial fractions,*

B
fi(w, y)g,;ff’!/_
X
We have then, by art. 7,

—P,,
3 (a, y)dx=2{m}

=®[f2<w>B1‘?<3>F'<m>J T

By Boore’s theorem this

Il

P, F/ ()
%@(@F&@F'@)] )

=o| ome i

For since P,_, is an integral function it contributes nothing to the interpretation of
© by being within the square bracket : and, if we assume that ¥'(x) and F(x) have no
common factor (which is also the case for F'(x)—which contains the o’s—and F(z) and

Pn—l

—>— no term involving

Jo@)Fo(2)F'(2)
the reciprocal of a linear factor of F'(x), which therefore may also be brought out of

Fy(x)~-which do not), we shall have in the expansion of

the square bracket.
The expression last obtained
=®[ 1 ] E A y) 80y
Jo(@)Fo(@) JE (@)™ x'(y) Oy

_ 1 Sz, ) 80y
“@’[fz(w)Fo(w)] Fo@)} 250 oy

Under this form the sum is immediately integrable, for the new variables (of which

.. . . 80,
alone this is now a function) occur only in the factor —e—yg

Integrating we find

o filmy) 1 L@ y) ,
3] fla, y)de= 2Lz<w>x'<y>d“—®[f2<m>Fo<x)]F @2 108 Oy +C

* See also note on art. 10, (i.).
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This is the general theorem for the summation of integrals of any form of which we
were led to suspect the existence.

It corresponds to that numbered (37) on page 193 in ABEL'S Memoir (and which
should be called ““ ABEL’S Theorem,” though that name is frequently given to the very
narrow case of it discussed on page 255), while it is more concise through the intro-
duction of the symbol ®, and more intelligible through the absence of the letter ».*

9. In general, as has been said, the function E has no factor independent of the a’s,
t.e., Fy(x)=1.

In this case the formula of the last article takes the simpler form

s[fe, y)dgc;—@[ - J zfl(,( Dlog 6y+0

As an example of the expansion of ® suppose fo(x)=(r—a)".
We have then

I ACK))
G ()

coefficient of ——1— in the expansion of

log 0y

1.e., of @ _1 )m]f‘(oc), say,

1.e., of'

m{l“(“) +@—a)l(2)+ . .

()

A sl 10g 04 ]

“m—1

1

= 777/“-1 da

where A is the value of ¥ corresponding to x=a ; and—representing by C;\(x) the

coefficient of dlg in the descending expansion of \(x)—

2-[ S, y)de= f — ﬁ(;',’ny) (m)ol

1 a7 (Sl A) _ S(@y)
=1 2 {397 g oa | Cy{ 2o o fu} +C,

which is identical with ABEL’s formula (44).

10. Before proceeding to examples of the use of the general theorem one or two
points in the proof and the result should be alluded to.

(1) 4 limitation to the form of the function 0.

In choosing this function we may not make ¢;=0, ¢,=0, ... ¢,.,=0 simultaneously:

* The want of clearness spoken of is due to an ambiguity in the important sentence (p. 187) in which
ABEL implicitly defines the letter » which is to appear prominently in his enunciation of the final theorem.
But it is hardly necessary to dwell on a difficulty which the method of the text avoids.

MDCCCLXXXT. 5 A



722 MR. R. C. ROWE ON ABEL’'S THEOREM.

in other words, our function must not reduce itself so as to contain @ only. This is
clear @ prior:; for if it should so reduce itself we might choose for ¢, a linear function
of x, which is generally impossible (art. 5).

It will be useful to examine at what point the assumption vitiates the subsequent
demonstration. We should, in fact, have

E=0(y)0(y,) - . . 0(.)

=49 - - - 9o
=q, 7
so that ’ .
__]2___. n—1
0y~ 10

and this vanishes for all the values of z obtained by putting E=0, so that the right-
hand side of the equation

N CEA N Y

is identically zero, and the whole process invalid.*

* There is one case in which the function 6 may be legitimately reduced to the single term go; viz.

the case when x is a linear function of y.
It is plain that, as n=1, we have not the difficulty of repeated roots which generally vitiates the result
of this assumption.

In fact, let
x(y)=y+a
while
O=ay+omr+. . .+2"
Then
E=F(a)=0
and, as by p. 718,
_ P(x) o0
R O

we have
p mn-—l

2y0lm=257 . ola,o-l—E%i- day+ .. +32=5— Ay

As an example of which formula, let a=a™

2:(}""” P mm.;_], az’”+"‘1
so that -—_— mt 1=J‘E’é’7 ola0+j2—9—,—da1 + ... +J‘2"‘9,—dan_1
' ’ 1 @
Put m=0 and we have —Sp= é~,da0+ 25,61&1-1— e
But —So=au_,
ﬂ?k
whence E@:O if b<n—1
» PRt

while 2%:1

And this is the theorem (easy to prove otherwise) which was assumed in the course of the general

demonstration on page 719.
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(i) The assumption (in BoorLr's theorem) that ¢ is not rendered infinite by the
values which satisfy the equation E=0; and the assumption (in art. 8) that F(x) and
F'(x) have no common factor.

These assumptions are identical: for ¢ is rendered infinite by the vanishing of
Jo(x)Fo(x)F'(x), and, since the roots of F are all functions of the a’s, they cannot satisfy
the equations fy(x)=0, Fo(x)=0, into which no & enters.

If then F and F” have no common factor, the first assumption is justified.

We assert in this that F=0 is not an equation possessing equal roots—i.e., that
Xy, Xy, . . . x, are all unequal. Suppose, on the contrary, that we have equal roots—say
xy=w,=0w5.* If then v, y,, y; are the corresponding roots of x we shall have

0(y) =0, 0(y5)=0, 0(y5)=0

for the same value @, of «; ‘and therefore in the expression of

1 _few E
AR E X ) Y

we have a term of the form g, viz. : that due to the root x=w,, and it will be three
times repeated.

We see then the character of the difficulty introduced by the equality of roots. It
does not altogether vitiate the solution ; it only requires that we should modify it by
using, instead of the equations 6(y,)=0, 6(y,)=0, O(y;)=0, the equations 3

d?0y,

dby
0(%):0: —=0, da?

du

=0.

The manner in which all the steps of the analysis and the final result are affected
by this change is obvious.

11. It will now be natural to give examples of the application of the general
theorem, and those are chosen the results of which are well-known, as furnishing
comparison between this and other methods of research among transcendants. The
second and third are treated by BooLE, in the paper frequently referred to, as examples
of his less general theorem.

1. The function sin™ x.

Let
1
==
and take
x(y)=y2+w9— 1,

* The reasoning will be applicable to any other number of equalities among the roots.

5 A 2
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so that
Sz, y)— s filr, y)=2; folx)=1.
Also let
Oy)=y+az—a*

Eliminating y we get
E=2¢"—2ax+a*—1=0

as the equation of the limits.
If a,, @, are the roots of this equation we easily find
x4l =1.

The theorem then gives

dz 2
EJ’\/(I iw2)=®[1]2- log (y—a+x)+C

=_201 <]Og +?/ a (1/2;)_‘_ >+C.

1 . .
But 2;: 0, wherefore the right-hand side reduces to a constant, and we have the

result that

o dp *  dr
|7t i
18 constant if
a2 =1,

and so

— I o de

/=2’
and this is, of course, the well-known theorem that 6+ <;S=:2I if sin®? 0+ sin*p=1,
(the angles being restricted to the first quadrant).

I1. The elliptic functions.

As a second example take

_ a -+ ba?

T (14 nat)y/ (1 —a?) (1 —ca?)
and let

x(y) =y*— (1—a?)(1—c*")
so that
2(a+bx?)

f K= J’ A+ na?)y () dz

and

Sil@, y)=2(a+0bx?)
flz)=1+na?

* To choose the more general form y+ bz —a leads by similar stepé to a less interesting result.
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Also take
0(y) =y —(1+pz+qz?),

so that removing the factor x=0 (see p. 732), we get by elimination of y between
x and @
E=(¢*—c*)ad+2pgr*+ ( p*+29+c*+1)x+2p=0.

It is clear that, in general, no linear relation connects the coefficients of this
equation, so that Fy(x)=1; and the formula reduces to

_ f1< )
B ;1 bm
= ®h1+7wc2jl2a+ log {y—(1+pa+g27)}
— ]_ -
1 a+ ba®
=0 (pq Ng——t) Z—, log {y—(1+pz+ga’)}
L e ga)

where, as usual, 1=,/ —1.

a—-
Therefore nE‘Jde: —%@2 7 "

o, @02 Jog {y—(1+pr+g27)}

z 14 na? Y
Now the last term in general vanishes.
pr+1l—y
o fy— 9 PO og <1+ B 2 >
For s gly—(+prtee) log(=¢7) , « gz
Y Y Y
and 21=O
Y
<1+pm+1 y)

while C! in the term 2 is L

z K qy

and this vanishes.

Therefore the first term of the descending expansion of S involves 7%, while that of
a+b

1 +na?
wherefore oy @bty log {y—( +pr+ 927}
2 14+ nx? Y

begms with a0

=0 *

= ba?
* There is an exceptional case if Z *8} for then the expansion of 11 pe) begins with #?; and the
C1 is not necessarily zero.

x
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Next, the two values of y under the sign 3 being
@/——:I:«/{(( +n>< +n>}, or say %,

the first two terms in the expression of n3{Xdx compound into

_ywams, A== H == (+ 2]

G 9 S )

_w/nna=b 1 (n—)*—(k+pv/n0)
2k (n—g)* = (k—py/ne)?

which is easily rationalised, and gives

2pka/n
(n—@)*+p°n—k?

a—b

V4 n- Z tan~!

which, substituting for £% its value (1-42)(c*+n)

L ky/n
—na—>b —02
= tan—!

=V . ln{l l (q+1)2}

Now, if x,, @, ; be the roots of the equation E=0, we get at once the relations

2p
L) Lglog == — 0
— 1)
)2 0,2 - 10y — 2 — ¢, Py 229 g(_q_-c: )
PP—(g+1)°1?
(L—a2)*) (1 —a,?) (1 — 2 2—1 F—0
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We have then finally the following theorem.

o+ bxc?
R (E v e riwrery

dx

then, provided that x,, x,, x, are connected by the single relation

(2 — P — )t — a4 0%1290229‘532)2:: 4( 1— wlz)( 1 "‘9322)( L—a,?),

we have

)= S L — b - —/{n(n+1)(n+ *) ez, *
P(ey) (o) () = ’\/ (it D(nt+ &) (Ct—n>ta,n Kl Fa{lty/T—a)(d _%2)1(1 b

If we write sin @ for « we have the corresponding expression

/\/ n a__é tan=1" V{n(n+1)(n+c?)}sin 0, sin 6, sin 6,
n+1)(n+c* n 1+n(1+ cos 6, cos 8, cos b;)

for the sum of three integrals of the form

j a+0bsin?0 do
o1 +n sin ?0)4/ (1 —c?sin ?6)

whose variables are connected by the relation
(1 —cos ?0, —cos 20, — cos *0;—c? sin 20, sin *0, sin *0;)*=4 cos *0, cos ?6, cos *0,1.
From the formula just proved we can deduce without difficulty the well-known

theorems connecting the elliptic functions of each order whose variables are connected
by the equation

1— cos 8, — cos *f,— cos ?0;—c? sin *@, sin *6, sin 0,2 cos 0, cos 6, cos O;=0]
which is only another form of the familiar relation

cos 0= cos 6, cos 05+ sin @, sin 0, A 0,.

* 1t is here assumed that n(n+41)(n+c?) is positive. If this is not the case the imaginary tan=! is
replaced by a real logarithm.

+ The exceptional ca,seZ’;g} in which there will be an additional term due to Ct must not be forgotten.

1 We take the negative sign in the ambiguity.
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For the first kind.

Here we put
a=1, b=0, n=0.

This does not fall under the exceptional case ; and our formula gives

F(6,)+F(6,)+F (65)=0.
For the second kind.

Here we put ,
a=1, b=—c* n=0.

This gives rise to the exceptional case.
The right-hand side of the formula vanishes. It remains to find the value of

1—c%?

Y

-0, 3 log 0y

1—c%? 1+ pr+ g2?—y,
=—C, g 2
B L+ petga®—ip

—9 — 292 1 noo
which, clearly,
=24 @e—. =2 ]
9020 2 1 ,
2¢ O%_w 1 o +3 7o + . g
p , p  pct
2pc?
292_02
=—c¢*sin 0, sin 6, sin 6,.
Therefore E(6,)4+E(6,)4+E(0;) = —c? sin 0, sin 0, sin 0.
For the third kind.
We have to write a=1, b=0, and get
Ii(n, 0,)+11(n, 6,)411(n, 6;)
- n 1 A/ n(n+1)(n+ ¢ sin ) sin 6, sin @
/\/ (n+1){n+c*) ta 1+n(l~ cos 0, cosle2 coszﬁs) ’

or the corresponding logarithmic expression if n(n-41)(n<c?) is negative).*
P g log p g

* Cayrey, ¢ Elliptic Functions,” art. 132.
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ITI. «“ ABeL’S Theorem.”

As a third example, consider a problem analogous to that of BooLg, art. 20 ; but
more easily reduced by ABEL’s theorem than by his.
Let '
R0

{¥ @)}~
where ¢(x) is a rational integral or fractional function, y(x) is a rational integral

function, while m and n are positive integers prime to one another.

To this form any expression containing only a single term can be reduced.
Let

X Eyﬂ—lpm
O=Ny—M

while

A, and Ay being rational integral functions : also let

0]
L A= oy
Then, eliminating,
E = )\11; _— Agnlpm’
and, in general,
Fy(x)=1.
So
X = ¢, () ___”?/"*2‘3[’1(“’)
@y b@)X )
so that .
Sz, y)=ny' ¢, (),
So(@)  =dy().
S . 1 .
Therefore 2[Xdac=® [mjl P il-;ﬁ) log (\y—\)+C
1
=0L¢(2)] 27 log (\y—1)+C
But, if 1, o}, @y, . . . ©,_; are the n'* roots of unity the values of y are

n N0 m

Yo, Py, . Yo, .
So the last expression becomes (putting w, for 1)

" m

O[4(@) W { T olog it T o log (apf —) | +C
=0 [p() ¥ { X wlog (o —31) } +C

since

MDCCCLXXXT, 5B
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As a particular case of this result what is often called ABEL’S Theorem may be

adduced.

Let
J(@)

(“f"“)\/‘f’l(w)‘ﬁz(%)

X=

We have to write in the previous work

for é(x) g%
“for Y(x) b1 (@) ba()
for = &

n

The right-hand side becomes

71 ., N
O[w aJ«/¢1<x>¢2(>2‘°l°g< VHE)HE) >+C‘

The two values of w are 41, —1.
Therefore the above
_®[ (x)] 1 log M =20/ (%) o)
r—a \/‘1’1(9")4’2(35) 7“1"'7"2\/961(95)‘#2(9”).

. . . . . —_ A
This assumes a more symmetrical shape if, with ABEL, we write, not 1/¢,(z)$,(z) =7§;’

4’2(93) h _MP1 ) Ay (%)
but b =n, % that /¢,(@)¢y(2)= N
With this altelatlon we get
f(2)dz _al/® 1 M/ B1(5) =N/ bo()
f N X OO [w—a}«/ FORE 8 M (@) Fran @) T

__J@ o MOVED =M@Y 6@
VEDE@ 8 M(a)/ (@) + hg@)n $a(@)

) @) oo M@V HE =M@V EE |
Ko=)/ @) ba(@) 8 (@) y/$y(@) + M) v by(@) T

which is the well-known theorem referred to.
We see it to be only a particular case of a particular case of the theorem called in

this paper ABEL’s Theorem.
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Secrion IT.

12. The expression (in a form algebraic or logarithmic) of the sum 3[Xdx having
been shown to exist, and having in fact been found, ABEL proceeds, in his art. 5, to
investigate the condition that this expression should become a constant. Of the pos-
sibility of this we have been assured by the result of the first example and of the first
case of the second example of art. 11. This investigation, as subordinate to the main
purpose, may be conveniently postponed to the second principal inquiry with which
the memoir is concerned.

This inquiry presents itself in two forms. .

I. Mention was made at the outset of the “requisite algebraical laws” which
connect the variables when the summation desired can be effected. And in the case
of the elliptic functions we have found that in order to express the sum of three func-
tions it is requisite that the variables should be connected by a single relation. We
are naturally led to investigate the number of relations necessary for the same effect
in the case of more complicated forms. This number, it must be said, depends not at
all on the number of the functions we consider but only on their form.

IT. We may also consider the matter thus:—

Representing by y(x) the integral [Xdwx, we have shown how to express, by the use
of an operative symbol ®, the sum

Yo+ () + - - o ()

where @y, @y, . . . «, are the roots of an equation
F(x)=0.

Now this equation involves a number, «, of arbitrary quantities a,, ay, a; . . .

Its p roots are functions of these & quantities. We can then find expressions for
0y, Oy, . .., in*terms of e of these roots, say x,, @,, . .. @, ; and substituting these
expressions in those which give @, ... x, shall have these u—a roots determined
as functions of the other o.*

The result then is an expression for the sum of a series of functions

Ple)+ - (@),

* This is most conveniently effected by
(1) solving for a;, ay, . . . the « equations—linear in a’s—
0(y,) =0, 0(y,)=0..., 9(y,) =0,

where the equation 0(y,) is the factor of E which supplies the factor 2—z,; to F(z), and

(2) substituting the values so obtained in F(z), which then becomes divisible by

(=) (2—ay) . . . (6—20),

and gives as quotient an equation of the degree u—« whose coefficients are rational integral functions
of (2, y,), &c., and whose roots are the quantities @,,q, @y, . - . @, Which it is required to determine,

5B 2
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# ...z, being any quantities whatever, in terms of an algebraic function and a
number of functions of the same form whose variables are themselves definite functions
of the quantities z,, a,, . . . @,

The question then arises, What is the smallest number of functions in terms of
which the sum may be expressed ? and can the sum of any number of functions be

expressed in terms of this smallest number ?*

13. Required the least value of which the difference between the. number of roots
possessed by the © equation of the limits’ and the number of constants introduced by

the ¢ equation of condution’ is susceptible.
This difference is expressed by u—a. We must put each term under a different

form.
(i.) For a.
Let us express the index of the highest power of @ in a function J(), supposed

rational and integral, by the symbol J(x).
Then in general the number of coefficients in J(#) is J(x)+1: and as in @ one
coefficient may without loss of generality be written unity '

a=number of coeflicients in 0(=q,_,y" '+ ... +q,)
=3g+4+n—1.

Two corrections must be introduced.
For the existence of each linear factor of F, implies a linear relation between the

o’s, and diminishes the independent number by unity. We have on this account to
subtract ¥,. It may happen, however, that the particular form of the function
renders the number of necessary relations less. Write then F;—A as the quantity to

be subtracted. :
Suppose again that some of the constants are so chosen as to reduce the degree

of E.t

In general p and a are thus equally reduced ; but it may happen that the form of
the function renders necessary a less number of conditions. If this lessens u by a
number greater by B than the lessening of « we have to use instead of F,—A,
F,—A—B,

We will however for the present drop the A and B, which would appear without
alteration throughout the process, and replace them at its conclusion in the shape of

a, correction to the result.

# In an earlier memoir (ABEL’S works, vol. ii.,, xi.), this question is dismissed with the remark “il n’est
pas difficile de se convaincre que, quelque soit le nombre x on peut toujours faire en sorte que n—p
devienne independant de x.” Here the actual value of this constant is investigated.

+ Tor example, in the case of p. 725, we put 4/ T—2%1—c%?=14pa+qa? and the assumption of unity
as the first term on the right reduced the resulting equation from a quartic to a cubic.



We have then

(i) For p.

Since

1t follows that

MR. R. C. ROWE ON ABEL'S THEOREM,

a=3q4+n—1—TF,

0(y,)0(%) - . - 0(y.)=F,F

30(y)=Fy+F=Fo+p

So
”—a=2@—2§—n+ 1.*
Now
0(y) 29,y
Zg+ry
and it becomes necessary to find 4y, ¥y, . . . Y.

14. We require the following Lemma.

The quantities

Y Yoy » + » Yur € 11 general equal in sets.

733

For let y1=7ﬁi; this being a fraction in its lowest terms (and we will take the
1

denominator positive).

Then one root

of x being, when expanded in descending powers of @,

My

. y=Axm4 ...
the expressions '
yzAa)leTi—l- cn
y=Aw2x7f%+ Ce
y= &e.
(where 1, o, @, . . . are the u™ roots of unity) are also roots, and if these are Yoy Yz o v «
we have y;=%,= ..., the-number equated being clearly a multiple of u,. Let it
be n,u, ; and write
Yi=Yo= . . . =Y, where k=mnp,
Yo = ... =Y where  ky—k,=mngu,
&o.=&c.
Y= - e =§/;l where  k;—k;_,=nu

and % =nt

* Here 0(y) means the degree of 6(y) when rendered a function of = by substitution for y from the

equation x (y)=0.

+ This lemma is the second of the theorems laid down by ABEL in his important memoir “Sur la
résolution algébrique des équations,” of which consists the last article (it was never finished) in the

second volume of hig

works.
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Also let us write, for shortness,

My My, ny
‘=0'1, “"-——0-2, e =07,
! Mo el

and let these be in descending order of magnitude, so that
01> 03>035... >0

We have then n, sub-sets, each of p, terms, with index %, n, sub-sets each of u,
1

. . m,
terms, with index —, and so on.

9

~

These quantities my, u;; My, pe; &c., can be speedily determined when y is given by
NewToN’s method.

Thus, write Aa” for 4 in the equation, and determine o by the condition that in the
resulting function of x the indices in two or more terms may be equal and greater
than in any other term (while the condition that the sum of these terms shall vanish
will determine A).*

These conditions are obviously necessary for the existence of a root y=Aa"+ .. .:
and it is easy to prove directly that we can thus determine values of the quantities o
unique, and in descending order.

For suppose the indices after substitution to be no; (n—1)o+a,; (n—2)c—+ay; . . .

Then putting '

no=(n—k)o+a,

ar
we have o=;
v

* As an example, suppose that y is determined by the cubic

X=y’+pgy® +py +pp=0
while .
a=1; p=3; py=2.
Writing Az for y the exponents are
30, 20+1, 043, 2.

It is clear that the conditions are satisfied by making 3c¢=0+3, 7.c., 0=3, while a quadratic is obtained

~ for A, so that there are two corresponding terms and %:@
They are also satisfied by making ¢+ 3=2, 7.c,, c=—1, and a simple equation is obtained for A.

‘We have, then,

m,
E—:ﬁ:%; m=1,
m,

B =1 3 ny=1
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and if we choose k so that E;f is the greatest of the series c% % ..., we have, deter-

mined as a unique value, what we will provisionally call o,.
Next put

(n—k)o+m=(n—s)o+a,

Cs—0,
whence o=
s—k

Now this value is to make
(n—k)o+ar > (n—1t)o+a;

or (t—k)a,—(s—k)a, > (t—s)au,

and since by interchanging s and ¢ we get the contradictory of this inequality, it is
impossible that by putting

(n—k)o4a= (n—t)o+a,

“each of these could be made >(n—s)o—+a,.
Therefore the second step is also unique ; and
Wg—0p O

<% since <t
s—T; T sice s 7 ’

so that the second o is less than the first and may be called o,
Now, resuming the process of art. 13, divide the terms of the expression

0(y) = Gumr¥" " 4 Qg+« - F Y+

into sets : calling the first k, of them the first set, the next k,—Fk, the second set, and
so on, the last k;—k;_, constituting the /™ set.

Also call that term of the first set in which when v, is written for y the highest
resulting index of « is the largest the major term of the first set, call that term of the
second set in which on the substitution of y, the same happens the major term of
the second set, and so on.

Then I proceed

(i) to show that by a proper choice of the quantities ¢,_j, Gu—g - - - @1 Qo Which
are at our disposal, we can make the major term of the first set an absolute major (for
the substitution ), %.e., furnish a higher index of x than is furnished by any other
term ; the major term of the second set an absolute major (for the substitution y,), and
$0 on, ,

(ii) to show that the condition of (i) is necessary in order that p—a may have the
smallest value of which it is susceptible. -
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(iii) to find this value.
The proof of (i) is most simply conducted by successively investigating the

conditions v
(@) that the major term of any (say the 7*) set should furnish a higher power of x

(for the substitution y,) than any other major term furnishes,
(b) that this major term should furnish a higher power than any other not-major

term furnishes.
In investigating (b) the conditions of (a) are to be supposed to hold. It will only
be found necessary to supply to them a slight additional restriction in order to satisfy (b).
17. The condition for (@) is that whatever values (of course lying between 0 and
n—1 inclusive) are given to » and s we should have

_(Z,. +P1'0' r > (Z; +Pso'/r,

where we have taken g, #" to be the major term of the »™ set.
We will write this, for brevity, in the form

Lpd+po>[p]+por oo (A)

go that
e =g,

If we make successively the substitutions

7’=m+1} r=m }

s=m s=m-41
we find that the above inequality requires the following :—

Loner]=Lpn]> (pn—pus1)onsy
< (Pm_pm+1)a'm
If then we write _
I_Pm+ 1:| - l_PmJ = (Pm — P+ 1)7m
we have
T > 0°m+1
<o

If we use also for p,—pu,, the abbreviation dp,, we have

Lpwsr)—Lpn]=38puTn
and it follows that
Len]=[p1]+8p1m14 .« +8puyiTiuy

k=m—

1
=[p1]+ k§1 Sp/b..T/ﬂ. [ e e e .. . . (B)
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The condition expressed by this equation is then necessary if the inequality (A) is
to hold.

It is also sufficient, as is easily shown.
For from it we obtain

ifr>s [pr]—[p3]=8p3.73+8p3+1.73+1-|— v F0pry T
>(3ps+8p3+1+ cee +8Pr—1)7r—1
> (ps—pr)Tr

> (Ps_'Pr>0'r
if r<s
I:P’:I_[P‘? =—-8p7..7',.—8p7‘+1.7'7~+1— o« e _SPS—I'TS—l
> —(8pr+8pr1+ - . . +8psy)7
> (py_'Pr)o'r-

The relation (B) (in which [p,] is entirely arbitrary and the 7’s are only subject to
the necessity of lying between consecutive o’s) expresses the necessary and sufficient
condition for the satisfaction of ().

18. Let us next examine ().

The condition is expressed by the inequality

where « is any term of the series 0, 1, ... (n—1) which is not one of the p’s.
Let a belong to the A set so that

[a]+a0y <[ pa]+paos
and let ‘
[a]+aoc=[p]+pon—A, . . . . . . . . (0
A, being a positive quantity.
We have then to make

[Pm:]_l'pmo'm > I_pAJ+P>\0-A+ OC(O'm—O')\) —Aa e e e e (D)

Now this inequality clearly holds when m=\. Again it holds when m=A+1
provided that _
[prs1]=[p]> —prr1oaitpronta(on — o) — A,
.e., 1f
(PA—P)\+1)TA> —P)\+10-)\+1+P)\o-)\+a(o-)\+1—o-)\)_Aa'

But this will always be possible if
.e., 1f (Pr—prs1)02> —priaOair Fpaoat2(on — o) — A,
e, 1
(a=prs1)(On—0n41) > —A,,

a relation which is always true since a—p,,, and o,—o,,, are both positive.
MDCCCLXXXT. 5 ¢



738 MR. R. C. ROWE ON ABEL’S THEOREM.

Once more, it holds when m=A—1 if

[PA—]]'—[PA] > —p)\+10-)\+1+P1\a')\+a(o-A~1—O-A)—A~a
e, if
(Pr—pr1)Ta1> —pPas 10217 a0+ a(oh—0y) —A,
r.e., if
(P)\—l —P)\)TA—l < Pr—102—1—" PA0r— O‘(O'A—l - U'A) +A,

and this can, as in the last case, be shown to be always possible.
Now if the inequality (D) holds, m being greater than M\, it will hold when for m
we write m-1 provided that
[pusi]=[pnltPus1Tnir—puon > (Tnsy—0m)
e, if
pu(Tui1—0n) > oo ppy— o)

but
Pm<a9 Gm>0'm+1

therefore this relation does hold. :
But the inequality (D) is true when m=MA+41. It is therefore true for all larger

values of m.*

It can similarly be shown that if the inequality holds, m being less than X, it will
hold when for m we write m—1; and that, since it holds when m=A—1, it holds for
all less values of m.

It is therefore proved universally.
‘We observe that, as was stated at the outset, the consideration of the case (b) has

only introduced a restriction into the conditions of the case (¢)—viz. : that the 7’s are
no longer merely subject to the necessity of lying between consecutive ¢’s, but must
satisfy the closer conditions expressed by the inequalities

(p —p )T >P,\CTA—P)\+10'>\+1+0‘(0'“1—0')\)—Aa (E)
g T <p,\0'A_PA+10'A+1+“(O'A+1_0'A)+Aa

where in the first line a denotes any one of the numbers of the A%, in the second any
one of the (\41)% set.

19. We have next to consider the second proposition of page 735, viz. : The condi-
tion of (i) is necessary if p—ea is to have its smallest value.

% Tt must be observed that this method of proof could not be used to deduce the case m+1, A +1 from
the case m, A; for it would not be necessarily true that p,, is less than a.
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Wiriting down a series of equations similar to (C) we have

0y) =lpl+po=[n—1] +@—Do, +A.,
9(?72) =[P1]+P10'1=[”_2] +(n—2)o; +A,, First set
&e. =k&ec. =&e.
0(yz,) =[P1]+P1°'_ 1=[”"k1:| + (n_kl)o- 1 +A, - g (F)
0(Ys,4+1) =[Pz]+Pz°’2=[”_k1'— lj'l‘ (n—Fk,— Doyt Aty Second set
&e. =é&e. =&e. _ '
&e. =é&e. =&e. ] &e. 5

and, adding all these lines together,

20y)=[n—1]+[n—2]+. . .4[0]+(n—1+. . .4n—k)o,
+(n—k—14. . .n—k)oy+. . .+ZA

or

S0y —Sq=(n—14. . .4n—k)o+(n—F—14. . An—k)ogt. . +ZA

Now, if the condition of (i) were not satisfied, some at least of the signs of equality
connecting the first and second vertical columns must have been replaced by the
sign >; and as those between the second and third column would have remained as
before, the equality at the head of this page would have become an inequality—u.e.,
the value of Sfy—3q would have been greater than it is——i.e., u—a would have been
greater.

It only remains to consider the term SA.

The smaller we can make this sum, and therefore, all the terms being positive, the
smaller we can make each term, the less will be our value of p—a.

Now from the general equation

[P)\] +pron= [0‘] +ao A,

we see that, since [p,] and [a] are integers, A, consists in general of two parts—an
integer and the proper fraction which added to (x—p,)o, will make it integral.

Now we can make the integral part vanish for every value of «; for to do so will
only require a relation between the major term and the other terms of each set;
so that, given the degree in x of the major term, those of the others in its set can be
written down.

As the conditions (i) only connect with one another the major terms of different
sets, this last condition is independent of them and can always be satisfied.

‘ 5¢2
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20. To find the value of u—o we must investigate the fractional parts.
Considering any set (say the \'), they are, with the notation of the Lemma (p. 746),

of the form

E(P)\ - “) my
J2N

where a takes each value from n—k,_;—1 to n—k,; and ky,—k_;=n,pu,.
But m, and u, are prime to each other.
Therefore, by the result of the Lemma, the sum

-1
=n,\m‘2

So then finally, giving to SA its least Valde, we have

3y —3q={(n—1)+. . .+ (—k)}or+{(n—h—1)+. ..
+ (=) }oyt- . A Shn(u—1)

This expression
=3ko (2n—Fk — 1)+ Lhkyoo(2n—ky—ky—1)+. . .+Zin(p—1).
Now ky=mnyp; kg=mnyu,+npy ; &e. = &c.; n=k=nu +nyu,+ . . . +nu.

Substituting we obtain

nypq—1
n1m1< M; +rgpet . - +nll~‘l>

Ngtg— 1
+n2m2< o ; F s+ .. +'ng[.b1>

+ ...
+3n(p—1)
= 3n,m, s+ E30 mp A S 3np— S0 —SEnm.

s>

Now, returning to the values of art. 13 and inserting the numbers A and B for the
correction there explained and writing instead of Snu its equivalent n, we have the

result following.

The least number of functions in terms of which the sum of any number may be
expressed is independent of everything but the form of the function considered (i.e., the
form of y given as o function of x by the equation x(y)=0), and if this equation has
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nyu, roots of the form y=Cam ..., nyu, of the form y=Cocrl_: + ..., and so on,
the number 1s
=3nmnus+ i3t mp—1snm—Lsn—in+1—A—-B . . . . (G)
s>r

(the last two terms — A —B corresponding to a correction which is in general zero).*
21. It may be well to render these methods and formulee plainer by applying them
to an example. 'We will choose for this purpose the simple case already considered in
the note on p. 734.
Our last formula for the value of p—a gives, if we assume that, as in general is
the case, the values of A and B are zero, writing

m;=3
nl— 1 O'lz—g—
=2
m2=—1
pe=1
p—a=3(1)+1(6—1) =3B —1)—4()—§+1

=3.

We will next find the values of q,, q;, 5 0r, as we have written them, [0], [1], [2].
We have
p=2 or 1
pe=0
Let us take p,=2.1
Then, by the formulee (F),

[2]=(2]
[1=[2]4+4—A; s0 Ay=4; [1]=[2]+1
[0]=[0]

# In the most simple case, when :
Y APy Pyt
is the completely general function (y, @, 1)*

mz=n, m==1, =1
and
p—a= it —gn+ 1=} (n~1) (n—2)

= deficiency of general n-tic curve.
This is a case of the result shown by Professor CAYLEY in the Addition to be universally true.

+ We might have taken p;=1 with a similar result. This multiplicity of solution will generally occur.
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and by the definition of 7
[0]—[2]=2~,
while from the conditions (E)
27, >3—3%a—A,, i.e., >3—5, or 3—5—1
<3—Ja+A, e, <3

so that 21, >0<3
whence [0]=[2], [2]+1, [2]4+2, [2]+3,

and so if the degree of g, be denoted by @ that of ¢, is #+1; and that of ¢, may be
either 6, 0+1, 642, or 64 3.
We have, then, by art. 13 (i)

a=[0]+[1]+[2]+2=30+3, 3044, 3045, or 3046
while
p=np {[p1 ]+ pro ) Fnape{[ polpaos}
=2(0+3)+1{0, 0+1, 0+2, 0+3}
=3604-6, 30+7, 30+8, 3049

So that, as on the last page,
p—a=3.

We have proved then that the sum of any number of integrals of the form indi-
cated by the fact that they are rationalized by the introduction of , where

Y 4+py*+py+py=0,

can be reduced to the sum of three; the equation of condition being ¢ i*+ ¢,y +¢,=0,
where ¢,=¢,-1, and ¢, lies between ¢, and g,+3 inclusive.

Secrron T1L

22. We have shown that the sum of any number whatever of similar functions such
as are discussed in this paper can be reduced to an expression algebraical or logarithmic
added to a fixed number of such functions whose variables are functions of the variables
of the given functions, this fixed number depending only on the form of function

considered. .
From this a more general theorem may be shown to follow, viz. : that a similar
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expression may be found for the sum of any number of such functions each multiplied
by any rational number positive or negative, integral or fractional.

If all the rational numbers are positive and integral the theorem follows at once by
supposing the functions whose sum we have shown how to express to be equal in sets.
And this suggests the method of treating the general case when the numbers are any
whatever.

Let 0 =p—a=fixed number to which the sum of the functions has been shown to
be reducible.

Then, by previous work (compare pp. 731, 732).

Py (20) Fo(ac) + - . . +1Pa(90a)=71—{¢a+1(90a+1)+' oo (Yuro)(@aso) }
P(XD) F X))+ - FPu(X) =V = oK)+ - FPeo(Xago)}

where o and &’ are any numbers whatever ;- z,,, . . . 2,., are functions of x; ... x,;
and Xy ... Xpppof X ... X, and o, V are algebraical and logarithmic functions.

Subtract : and let the last 6 of the terms on the left-hand side of the second be
(both as to functional form and variable) identical with those in the bracket in the
first. Then, writing B for «’—6, we have

‘Pl(x1)+ s +‘Pa(xa)—¢’1(X1)_ s _‘Ps(Xﬁ):”_V‘I‘{‘Pa'ﬂXaﬂ'l‘ ‘- .. +lpu+0(Xa+9)}‘

Equate all the functions on the right to zero.

This will give 0 relations between the «’s and X’s.

Now making the functions on the left equal in sets, and dividing by any requisite
integer, we have a result which may be written

b (y) Fhobo(ye)+ - oo Fludu(yn) =W

where the ¢’s are similar functions, m is any number whatever, W is an algebraical
and logarithmic function of the #’s, which are themselves connected by 6 relations, and

the #’s are any numbers whatever. -
If we express 6 of these variables as functions of the rest and call them #s, putting

n for m—0, we can write

iy (1) +hao(y) + - - - +hn¢n(yn)=w+k1q5’1(z1)+ e oo ke o(25)-

Or making, as we may, the &’s each=unity we have shown how to find the
expression required.*

* The subscript letters attached here, and not before, to the functional symbols introduce no novelty.
They are only intended to suggest the fact that what we have written y(;), ¥ (@) . . . are really Y, ¥1),
V(9 Yg), . - .3 while y; and 7, . .. are not necessarily the same functions of @), ... This has not
been hitherto overlooked, it is only more clearly put in evidence now.
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23. We may conveniently investigate at this point, as a corollary to previous work,
the conditions necessary that the ‘algebraic and logarithmic function’ often referred to
already should become a constant; in other words, that the term involving ® in the
expression of ABEL's theorem should disappear, and with it the arbitrary quantities

al’ a2 « s .
We will assume Fy(x)=1 for the sake of simplicity, and have therefore the formula

of Art. 9.
The first condation vs that

for otherwise the terms contributed by it to ® will introduce the arbitrary

quantities a.
Next, we must have

038 100 gy=0
‘ X %Y
or, which comes to the same effect,

hizy) 0y

Gz, —==0

X ()" 0y
and since 80y=0y, 8 indicating differentiation with respect to a’s, and consequently
not altering the degree of a function in «,

30y\
< 9@/) =0
and the condition to be satisfied is
<f1/<wy)> <1
xX'(¥)
when, for y, any whatever of the series v, ¥, . . . ¥, has been substituted.

Now fi(x ), being integral and rational, can be expanded in the form

1

'=§_ Py
=0

¥

We require then that, for all values of % and 7 from 0, to n—1

P+rye—x'(y) < —1.
Now
X W) ==1)e—92) - - - Ye=Ymr) e—Yir1) -« - (Ye—y.)

whence X W)=Y+ - - - +Yi+(n—E)y

so that P,<—14y+ ... +y,+o—k—r)y:



MR. R. C. ROWE ON ABEL’S THEOREM. 745
Now, to write k4-1 for % is to change the right hand side of this inequality by
yr—(n—k—r)ypt (e—b—r—1)yi,y 5 1€, by (n—h—r—1)(yss~s).

This is negative if k<n—r—1
vanishes if k=n—r—1

is positive if k>n—r—1.
So there is a minimum value when k=n—r—1, and we must therefore have
P < =144+ -+

Let n—r—1=Fk,+B (and lie between k, and £,4,),

then P,<—14nm+ ... +nama—|—,827@“
: a+1
Therefore ,
P=1!%nm1g"] _
P7<E{Elnzml+,3m+l} L. . . . ... . (B

If this is to be true whatever 7 is, it must hold when we put a=0 ;

wherefore P, ?‘E(B%) —1ZE(Boy)—1
where 7 is one of the numbers n—1, n—2, ... n—k and B is less than k, : for
B=n—r—1. '

Now P, cannot be negative, therefore the smallest value assignable to 8 is the least
which makes

E(Bo)=1; i.c., is (B'E)E@)-F 1.

We must then have P,_g_, y"=#=" as the highest term in f,(x, v).
This condition, necessary—and, as we see without difficulty, sufficient also ; for the

values assigned by equation (B) to P, are clearly positive when a is greater than zero—
can always be satisfied unless 8 =n.

. . . 1 1
This can only happen in two cases, viz. : when o= oro=_ In these two cases
1t can be easily shown that a single integral of the given form can be expressed by
MDCCCLXXXT. 5 D
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means of algebraic and logarithmic functions; so that ABEL'S theorem becomes
unnecessary.

Except then in these two cases it is always possible by satisfying the conditions
(A) and (B) to render the sum of the series of functions equal to a constant.®

The number of arbitrary constants, being equal to the number of relations con-
necting the variables of the functions which we sum, will by art. 20 (G) be

3 s+ SEPmp—LSnm—1ISn—Ln41.

s>r

It is not necessary that we should assume F(x)=1 for the correctness of the

processes of the last two pages.
Our equations will be the same if for any other reason Fy(x) disappears from the

general fofmula, and reduces it to the case of art. 9

But this will happen if in the denominator of — e E‘ﬂ(qz ? log 0y there is no factor

also occurring in Fy(x) ; and this will be so if' Fy(x) and fX( ) ” do not vanish for any
1

the same value of .
If this condition hold the results just arrived at will remain true.

APPENDIX.
LeEMMA.

To find the values (i) of the integral parts, (ii) of the fractional parts, (iii) of the
complements to the fractional parts of the series of terms

o a+b at+2b a+(n—1)b
w o on’ w7 n

where n is o positive integer, and a and b are integers positive or negative.

By the ntegral part of a term we mean the integer next less than or equal to
it; by the fractional part that positive fraction (zero included) which added to the
integral part gives the number ; by the complement of the fractional part that fraction
which added to the given number produces the next higher integer.

Let these functions of the term be denoted by the symbols E e €'

* A notable particular case is that in which f,(¥, y) consists of a single term, a#y”; where m is so
chosen as to satisfy the condition (B) above, and % so as to satisfy the equation (i) of the last page.
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Then, by the theory of numbers, if b and n are prime, the integers

@ a+b a+n—1.5
ne-, Ne Y .. . e ————
n n n
will be (in some order) the series 0, 1, 2. .., n—1; while if b and n are divisible by

¢, ¢ being their greatest common measure, the integers

a a+b a+n—1.0
ne-, ne——,. .., NE —————
n n SN

form an arithmetical progression whose common difference is c, repeated ¢ times ; and
the smallest term of this progression is the remainder when ¢ is divided into a.
If this remainder be called d we have

l=n—=1
s “;lb C{d+(d+c)+(d+20)+ to%terms}
=0
n—=c
=d+"5
whence
3 ‘€,a+lb Tyt
=0 - =0
=__d_|_'n_+£
and
R Ny /)] a4 b n+c
2 B =i td

Corollary 1.

If ¢ the greatest common factor of b and n also d1v1des a, then d=0, and we have
the simpler forms

n+c n—ec
Se=—.

== 2

Corollary ii.

The sum of the fractional parts of any n terms of the series (repetitions being allowed)
differs from the sum of the fractional parts of the values of the same terms when a is
put equal to zero, by an integer.

For, if the sum of the coefficients of b in the numerators of the n terms be ), then

5D 2
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D . :
Eel=a+——2E in the first case

262—"‘—2E in the second

(the notation being obvious)
wherefore Se—Se'=a+3E,—3E = an integer

which is the required result.

List orF ERRATA.

In ABEL'S Memoir the following slighter mistakes should be corrected :—

Page 184, 1. 12, 183, for ¥ read T
192, 1. 4, for ,x—pB read (x—pB)"
200, 1. 3, for hy™ read hy*’.
207, 1. 9, for xy read xy.
231, 1. 2, for #, read z,.
231, 1. 3, for z, . read 2.
233, for v read » throughout.
240, ' for s read s,, throughout.
243, 1 2, for n8,,  read nd,,.
252, last line, fors,_;  read s,_.
255, last line but one, for z read 2.

There are besides these the inaccuracies referred to by M. LiBrr (the editor of the

paper) as occurring on pp. 226-8.
These are too numerous to be treated otherwise than by 1‘e-writing the pages, which
has therefore been done ; and they immediately follow.

“ Alors 'equation (92) donnera les suivantes :—

FUD)=A11) —4—4), donc Aj =3 F(129)=F(11)—2.
FOO=f(11)+4—A4,  done AF =} F10)=f(11)+1.
FO) =f(6) —3—A/, donc Aji =% f(9) =/(6) —1.
£(8) =f(6) —3—AJ, dove A =} f(8) =f(6) —1.
A7) =f(6) —k—Ad, done A =% £(7) =f(6) —1.
J() =/(6) +5—A;, donc A S5) =/(6).

f(3) =/(4) —F—A,",  donc Ay JS3) =/£(
J@) =/(4) —1—Ay",  donc Ayi=0 f(2) =f(4
S(1) =f{4) —§—A", done Ayi=1 f(1) =f(4

I
W= o= G o
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“Pour trouver maintenant f(0), f(4), f(6), f(11), il faut chercher les limites de 6,, 0,
0, 0,

“Or les équations (103), qui déterminent ces limites donnent

11—oy  B3A4 1 211,
11— %AB . 4 12 6, 3
< s do w0 <3 +517’r+~17 sTe b5 5 tsar
“1l suit de 1a que
0,> 2<%
1785 ~ 85
“On a aussi
G—ay BAS o . 11
02>2—7 ,dlou92>...,2—7
6— 5A,g . 2 3
o 2 ; dou 0< 14,.
“11 suit que
5
02>1—4<1
h—ay Ag 123 1
05> 4 2 ; dod 0>O’4 L 44 4
4— Al R
0, < 4“4+ 5. dod f,< 1
“Tl suit que
0, >4 <1.

“ Maintenant 1’équation (97) donne

S o) =S (1) > (pne1 = pu)(0 110 ur + 1= 0" _100)
S(pw) =f (pu1) < (P11 —pu) (€ 11Oy +1 =0 o n) ‘

ou §”,._, est la plus petite, et #,._, la plus grande valeur de 6,._,; donc on trouvera, en
faisant m=2, 3, 4,

S(6)=/(11)>5(354 +1—4%3 )5 (=1+88)
SO = (11) <584 +1—88% ): (=3+31)
SO=6) >2(r —1—+5d ) (=—1)
J4)=f6) <2015 —1=1% )5 (=3)
SO)=f4) >4} —4+1=—1); (=—3)
SO)=f(4) <4(1—§ +1=1=1); (=—2)
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donc on aura pour f(6)—f(11), f(4)—f(6), f(0) —f(4) les valeurs suivantes :—

SO =f(11)=2,3. f(§)=A(6)=0. F(0)=f(4)=—3, —2.
d’ou
J(11)=£(6)—2, f(6)—3; f(4)=/(6); f(0)=F(6)—3, f(6)—
J(12)=f(6)—4, f(6)—5; f(10)=f(6)—1, f(6)—2
JO)=/(6)—1; f(8)=f(6)—1; f(7)=f(6 )—1 S(5)=/(6)
J(8)=f(6)—1; f(2)=£(6)—1; f(1)=/(6)—

“En exprimant donc toutes ces quantités par f(12) on voit que les fonctions
Q19> Q11 - - - Qo sont respectivement des degrés suivants :—

(12) (11) (10) (9) (&) (7 (6) (3) (4 (& (@2 (@ (0)
0, 042,043, 0+3, 043, 043, 0+4, 044, 0+4, 0+3, 043, 0+2, (0+2, 6+41)

ou

(12) (11) (10) (9) (8) () (6 (B) () B @ (@) (0)
0, 0+2, 043, 044, 044, 044, 045, 045, 0+5, 0+4, 044, 0+3, (043, 0+2)

ou 0 est le degré de la fonction g,
“De Ia suit que
a=f(0)+/(1)+ . .. +£(12)+12=130+47, 130+48

180+57, 186+ 58
et

M=n’u’<f(p1)+p1%7>+ R R
= 3(11)+ 444 5£(6)+ 6+ 4/(4) =8 -H/(0)
clest & dire
p=130495, 136+96
1304105, 13604106
“La valeur de p—a deviendra donc
p—o=238

comme nous avons trouvé plus haut.”
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Addition to Mr. Rowr’s Memoir.
By Professor CAYLEY, F.R.S.

Received May 27,— Read June 10, 1880.

In ABELs general theorem y is an irrational function of # determined by an equation
X(y)=0 (or say x(x, y)=0) of the order n as regards y: and it was shown by him that
the sum of any number of the integrals considered may be reduced to a sum of y
integrals ; where y is a determinate number depending only on the form of the equa-
tion x(x, ¥)=0, and given in his equation (62) p. 206: viz, if (solving the equation so
as to obtain from it developments of y in descending series of powers of x) we have®

~ m
mu, series each of the form y=wm 4 . . .

My

n2#2 13 D) y-:x’u"—l_ e ey

mk

Ty Iy 7] ?/=96“k+ e ey

(so that n=nu,+nouy . . . +mu), then y is a determinate function of n, m,, u,;

Mgy Mgy g5 « o o Ny My, e
Mr. Rowe has expressed ABEL’S v in the following form, viz., assuming

M . m,
as o >t
o M Pk

2

* The several powers of » have coefficients: the form really is y=Azw, + ..., which is regarded as

1
representing the u; different values of y obtained by giving to the radical zi, each of its u; values, and
the corresponding values to the radicals which enter into the coefficients of the series: and (so under-

1 L. m my—1
that the series contains only the radical @k, that is, the indices after the leading index ;11 are —*—1;;—,
mlgz, ...; aseries such as y=Azi+Bwi+ ..., depending on the two radicals 23, z3 represents 15

different values, and would be written y=Ax#+ ..., or the values of m; and u; would be 20 and 15

respectively: in a case like this where %Ll-‘ is not in its least terms, the number of values of the leading
1

coefficient A, is equal, not to p,, but to a submultiple of u;. But the case is excluded by ABEL’s assump-

tion that q;il, 75-2— . .., are fractions each of them in its least terms.
1 M
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then this expression is

y=3nm,ngu,~+ 30 mp—L3nm—Li3n—LIn41,
§>7

or what is the same thing, for n writing its value Sapu,

y=23nm,ngu,~+ 30 mp—LSnm—LSnp—L3n+1,
s>

where in the first sum r, s have each of them the values 1, 2, ...k, subject to the
condition s>7; in each of the other sums 7, m, and p are considered as having the
suffix », which has the values 1, 2, . . . k.

It is a leading result in RreMaNN’s theory of the Abelian integrals that v is the
deficiency (Geschlecht) of the curve represented by the equation x(x, )=0: and it
must consequently be demonstrable @ posteriori that the foregoing expression for vy is
in fact = deficiency of curve x(x, ¥y)=0. I propose to verify this by means of the
formulee given in my paper “ On the Higher Singularities of a Plane Curve,” Quart.
Math. Jour., vol. vii., pp. (1866) 212-222.

It is necessary to distinguish between the values of 1—73 which are >, =, and < 1;

and to fix the ideas I assume k=7, and

m-y M, M .

—1 = Feach >1,

My Mg Mg

m,

—=1; say my=p,=N\; and n,=6,
Moy,

My M M

— = =T each <1,

M5 Mg Moy

but it will be easily seen that the reasoﬁing is quite general. I use 3’ to denote a
sum in regard to the first set of suffixes 1, 2, 3, and X" to denote a sum in regard to

the second set of suffixes 5, 6, 7. The foregoing value of « is thus
n=3/nu4+N0+3"npu.

Introducing a third coordinate z for homogeneity, the equation x(x, 7)=0 of the

curve will be
y Y\ afhy AN my g
0= yz»x‘l—ocm) ce (y—wh) y—oc#szl‘u>. .

where it is to be observed that ()" is written to denote the product of n,u, different

7,

,'nl —_— . . 3
series each of the form yzm~1— A xe . . . ; these divide themselves into n; groups, each
a product of u, series; and in each such product the p, coefficients A are in general the
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1
p, values of a function containing a radical a# and are thus different from each other:
it is in what follows in effect assumed not only that this is so, but that all the n,u,
coefficients A, are different from each other:* the like remarks apply to the other

A\ A8
factors. It applies in particular to the term (y—ccx) , viz., it is assumed that the

A
coefficients A in the N0 series y=Ax -+ . . . , are all of them different from each other.

These assumptions as to the leading coefficients really imply ABEL’s assumption that
. . . . A
::nl, Ce % are all of them fractions in their least terms, and in particular that S8 a
1 * ,
fraction in its least terms, viz., that A=1: I retain however for convenience the
general value X, putting it ultimately =1.
In the product of the several infinite series the terms containing negative powers all
disappear of themselves; and the product is a rational and integral function F(z, v, #)

of the coordinates, which on putting therein z=1 becomes =x(x, ). The equation of
the curve thus is F(z, 3, 2)=0; and the order is =?£~lnlpl—|— e FNOF gt
1

=mmn+ ... +N0Fngu;+ . . . ; viz, if K is the order of the curve x(z, y)=0, then
K=3"nm+N0+3"np.
The curve has singularities (singular points) at infinity, that is, on the line z=0:
viz.— '

First, a singularity at (z=0, x=0), where the tangent is «=0, and which (writing
for convenience y=1) is denoted by the function

My 73 (1 —py)
(z—acm:-m U

"y

My = My
where observe that the expressed factor indicates n, branches (z—wmnwl) , Or say

ny(m, —p,) partial branches z—w’“?;:fl, that isn,(m, —p,) partial branches z= Aloc”h”—lm +...,
with in all n(m;—pu,) distinet values of A,; and the like as regards the unexpressed
factors with the suflixes 2 and 3.

Secondly, a singularity at (=0, y=0), where the tangent is y=0, and which
(writing for convenience z=1) is denoted by the function

ks 55 —n05)
(z—ym—ms cees
s

where observe that the expressed factor indicates n, branches (z—yus-ms)uﬁ-m , or say

* This assumption is virtually made by AsBEL, p. 198, in the expression “alors on aura en général,
excepté quelques cas particuliers que je me dispense de considérer: h(y' —y")=hy', &c.”: viz., the mean-
ing is that the degree of y’ being greater than or equal to that of 4"/, then the degree of y'—y" is equal to
that of ’: of course when the degrees are equal, this implics that the coefficients of the two leading terms
must be unequal.

MDCCCLXXXI. 5 E
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15 (s —m;) partial branches z— ye=m:, that is n,(u; —m;) partial branches z=A5yf*sims +...,
with in all n;(u;—m;) distinet values of A;: and the like as regards the unexpressed

factors with the suffixes 6 and 7.
Thirdly, singularities at the @ points (z=0, y—Ax=0), A having here 6 distinct
values, at any one of which the tangent is y—Ax=0, and which are denoted by the

function
/ )_\ A8
(="

but in the case ultimately considered \ is =1; and these are then the 6 ordinary
points at infinity, (=0, y—Ax=0). |

According to the theory explained in my paper above referred to, these several
singularities are together equivalent to a certain number &4« of nodes and cusps,
viz., we have
8'=IM—33(a—1)
K S(a—1),

hence

P 3(a—1)

&+«
and (assuming that there are no other singularities) the deficiency
LK —=1)(K—2)—8&—«

1s

=H(K—=1)(K—2)—sM+43(a—1)
this should be equal to the before-mentioned value of vy, viz., we ought to have

(K—1)(K—2)—M+ 3 (a— 1)=2Zn,m,nu,~+ Zn*mp—Snm—Snp—3n-+2

s>
or, as it will be convenient to write it,

M=K?>—3K 45 (a— 1) — 23n,mnu,— En*mp~+ Snm—~Znu-+3n,
which is the equation which ought to be satisfied by the values of M and Z(ax—1)
calculated, according to the method of my paper, for the foregoing singularities of the
curve.

We have as before

K=3"nm-+3"nu+ O\

The term Zmn,m,nu,, written at length, is
s>r
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= nymy(ngphy +ngps+ ON+ Mgt + g5+ 17p07)

+7gmy Ngpig =+ ON— 10505+ ngpag + 1 par)
+ngmy( ONA- g pa; g+ 12707)
+ O\ ( Mg pty Nt pt7)
+nym Mg+ Nrfir)
g ’ Tgthr)s

which is
=3/n,m,n g+ ONS nm~+ 3" np) + 3 nm 3" np~+3"nm,nu,.
s> s>

We have moreover
SnPmp=3n*mp~+ PN 43" n*mp,
Snm =3nm +60N +3'nm,
Sip =3nu +ON +3"np,
S =3n 460 +3"n

We next calculate S(a—1).
For the singularity

My Ny (M —p,)
(z—wnl-”“) .

m,

each branch (z—wnl—m)m‘—m gives a=m,—pu,, and the value of 3(a—1) for this singu-
larity is ny(m,—py— 1) 4ng(my—pg— 1) 4n4(1mg—pus—1), which is
=3'nm—3'nu—3/n.

For the singularity
Bs  \Pelus—m;)
(z——y/*s-ms) ce
Ms

each branch (z—y#s-ms)ﬁw " gives a=p,—m;, and the value of S(e—1) for this singu-
larity is m5(p; —m;— 1) +n4(ng—mg—1) 41y (w;—my— 1), which is

=3"np—3"nm—3"n.
For each of the # singularities

<y _ x;)xo

we have a=\ and the value of S(a—1)is =0(A\—1): this is =0 for the value A=1,
which is ultimately attributed to \.
bE2
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The complete value of =(a—1) is thus
=3nm—3"nm—3'nu+3"nu—3"n—3"n—O0\—0.
Substituting all these values we have

M= ('nm—+3"nuw)*+ 20N nm~+32"nu) +(ON)?
— 3(3'nm~+3"nu)— 36\
+Snm—3"nm—3"nu+3"nu—3n—3"n4ON—0
— %E,«nfm"n‘w — 20N (= nm 432" nu) — 23 nm. = nu— 23 E"n,.mmsp.s
—3'nPmp— (ON)*— 3 nPmp
+ S'nm—4ON4-3"nm
+ 3 np~+ O3 np
+3'n+4+04+3"n,

or reducing

M=(Z"nm)*—3"nm — = nPmp —22'0,00,0fu,
>r

+ (& np)?— 3" np—3"nfmp— 23" n,m,n, ;
s>

and it is to be shown that the two lines of this expression are in fact the values of M
. . . iy (i —py) 5 \s(us—mg)
belonging to the singularities (z—ac”h—m) ’ ., and z—yﬂsfms> ’

respectively. We assume A=1, and there is thus no singularity <y—ac;)w.

I recall that, considering the several partial branches which meet at a singular
point, M denotes the sum of the number of the intersections of each partial branch
by every other partial branch (so that for each pair of partial branches the inter-
sections are to be counted twice). Supposing that the tangent is =0, and that for any
two branches we have z;=A x”, z,= A 2 (where p,, p, are each equal to or greater
than 1), then if p,=p,, and 2 —z,=(A, —A,)x?* where A;—A, not=0 (an assumption
which has been already made as regards the cases about to be considered), then the
number of intersections is taken to be =p,; and if p, and p, are unequal, then
taking p, to be the greater of them, the leading term of z,—z, is =Ax”, and the
number of intersections is taken to be =p,; viz, in the case of unequal exponents,

it is equal to the smaller exponent.

Ny

My (g — 1) .
Consider now the singularity (z-——mmx—m) o ; and first the intersections of a
partial branch f—amin by each of the remaining n,(m;—pu,)—1 partial branches of

. . . . m
the same set : the number of intersections with any one of these is =77-7~3—~-; and con-
h—#
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“1

sequently the number with all of them is = = [7,(m,—p,)—1]  But we obtain
1

this same number from each of the n,(m,—p,) partial branches, and thus the whole

[721(’7@1"}*1)—1] =y 1 (1m0 —pay) —1 ]

Taking account of the ot,hel sets, each with itself, the whole number of such inter-
sections is

number is "1(7%1—#1)

nym 7y (my —py) — 174 nzmz[nz(”” lg— o) — 1 |-ngmg| ng(1m5—pg) — 1],
which is
=3/n*m?— = n*mu—3"nm.

Observe now that —2 p >——2 that 1 is <——, and that, these being each <1, we thence
1 ]

My — M
have 1—"1>1—*2 that is 2 #1577 . and we thus have
1y 1y’ Ity iy

0y My g

My —py  Mg—fy g — fbg

. . . . . M 1my—py)
Considering now the intersections of partial branches of the two sets (z—wml—/h)

My

Wy (Mg —hs) . . _ M . . .
and z—wmrw) respectively, a partial branch z—am-# gives with each partial

My

— and in this way taking each partial branch
1~

branch of the other set a number =

m

of each set, the number is 7, (m,— p,).75(my— ). , =nymgng(my—py) 5 and thus

for all the sets the number is

=071 (Mg — pro) =+ 1y g (Mg — prg) + Mg Tg (Mg — pig),
which is
=3/, 9,0 Mg~ 3, 1,1, N gfhs,
s>

where in the first sum the 3 refers to each paif of values of the suffixes. But the
intersections are to be taken twice ; the number thus is

=23/ n,m, N0 — 230,00, N
>

Adding the foregoing number
3 nPm?— 3 nPmp—3 nm,
the whole number for the singularity in question is

= (3'nm)*— ¥ nm— Z'nPmp— 23 n,m, .
s>
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5 (s —1M5) . . .
Similarly for the singularity (z—yﬁgﬂ) S taking each set with itself, the
number of intersections is

Tgpis] 15 (s = 15) — 1] 4-ngpe (g —m05) — 110100 70 (1 —m7) — 17,

which is
: 2//72/2“2_ 2//77,277”‘L — El,nib.
My Mg . My Mg
We have here —°>—° and each of* these being less than 1, we have 1 —-—=<1—_,
K5~ K s Mo
that is /fi:??l_5</@_f’ or lb:”“>__ﬁ§ﬂ~. - and so
] He Hs — My g Mg
A
o Mg < M
Hp— Mg e p5— T
. . s \Pslus—m;) e \olpe=10) .
Hence considering the two sets (z—y“s-ms) and (z—ym-mn) , a partial
branch of the first set gives with a partial branch of the second set ;—% intersec-
(]
tions : and the number thus obtained is 17,5(,u,5—-mﬁ).nﬁ(yﬂ—mﬁ).M ﬁ GmG, =gy —m;).

- For all the sets the number is
N5 Tgpag (s —15) + 5 phy (o5 —105) M0 p0 (=710
or taking this twice, the number is

=23 Ny, ogpos— 23 10,1, Mg
s>

where in the first sum the 3" refers to each pair of suffixes. Adding the foregoing

value
3 0%u? =3 P mp— 3 np,

the whole number for the singularity in question is

=(2"np)*—3"nu—3"n*mu— 25"%,.7717.7?,,#3 ;
and the proof is thus completed.

Referring to the foot-note ante (p. 753), I remark that the theorem y= deficiency, is
absolute, and applies to a curve with any singularities whatever : in a curve which has
singularities not taken account of in ABEL’S theory, the “* quelques cas particuliers que
je me dispense de considérer,” the singularities not taken account of give rise to a
diminution in the deficiency of the curve, and also to an equal diminution of the value
of y as determined by ABEL’s formula ; and the actual deficiency will be = ABEL’s y —
such diminution, that is, it will be = true value of y.



